
Selected VM Algorithms From FreeBSD

Matthew Dillon
FreeBSD Project

The FreeBSD VM System – What is Memory Anyway?

�Anonymous Memory (Allocations, backed by SWAP)

�File-Backed Memory (Program Binary, mmap())

�SysV Shared Memory

�ZAPHOD's Memory (well, ok, really ZFOD memory = zero-fill-on-demand)

�Device Memory (e.g. Like a Video Frame Buffer)

Memory Structure is Managed by VM Objects

 SWAP

 SWAP

 FILE

PROCESS

PROCESS

P1

P3

P2

P4

P2

P3

P1

P2

P1

P3

P2

P3 Simplified View

COW MAPPING

MMU

MMU

�SHARED mapping verses PRIVATE (copy-on-write) mapping

PROGRAM
 BINARY

P1

P3

P2

SHARED
LIBRARY

P4

P6

P5PROC-1

 ANON
MEMORY

P7

P9

P8

P1

P3

P4

P5

P7

P6

P8

P9

PROGRAM
 BINARY

P1

P3

SHARED
LIBRARY

P4

P6
P5

 ANON
MEMORY

P7

P9

P8

ANON

ANON

 ANON

 ANON

ANON

 ANON

 ANON

PROC-1

P1

P4

P5

P6

P9

PROC-2

P1

P3

P4

P5

P6

P9

BEFORE FORK AFTER FORK

P2
P2

P2

P2

P2

P3

P7

P8

P7

P8

P3

P7

P8

 ANON

P7

P8

P3
P2

P2

VM Object Stacking can get Complex

COW LAYER

COW LAYER HIDDEN
 LAYER

ACTIVE

INACTIVE

CACHE

FREE

DISK

�LFU ORDER (ACCESS FREQUENCY)

�CLEAN OR DIRTY

�MAY BE MAPPED

�LRU ORDER

�CLEAN OR DIRTY

�MAY BE MAPPED

�LRU ORDER

�CLEAN PAGES ONLY

�REMOVED FROM PAGE TABLES
�MRU ORDER

�CLEAN AND UNASSOCIATED

Managing Pages of Memory – VM Page Queues

DIRTY

CLEAN

ALLOCATE

FREE (CACHABLE)

FREE (UNCACHABLE)

ACTIVE

INACTIVE

CACHE

FREE

DISK

Sequential Heuristics

Write Behind

Dirty

DISK

Read Ahead

Clean

�Writes data as clusters complete

�Depresses priority of pages

�Rewrite case (covered later)

�Reads data ahead of request

�Depresses priority of RA pages

WB

WRITING FILE SEQUENTIALLY

WBFILE RA

READING FILE SEQUENTIALLY

RAFILE
64K TYP.64K TYP.

RA RAFILE

64K TYP.

ACTIVE

INACTIVE

CACHE

FREE

Write Clustering by the Pageout Daemon

(ignore, not close to deactivation)

�Activated when we decide to clean a dirty page

�Locates other nearby dirty pages (logical)

�Must be in a state similar to the original page

�Must also be physically contiguous

�Works when writing to SWAP or to a FILE

B2B1

DIRTY PAGES IN VM OBJECT

B3 B5B4 B6

B3

B4

B2

DISK

B3

B1

Select B3 Clustering adds
B2 and B4

Read Clustering by the VM Fault handler

B2B1 B3 B5B4 B6

VM FAULT ON MEMORY ADDRESS

B7

�Uses an unmapped page to trigger read-ahead

�Reads data ahead of request

�Detects if memory is being accessed backwards

�Depresses priority of RA pages

�Works when reading from a FILE or SWAP

VM FAULT ON MEMORY ADDRESS

B8 B9

B3 B5B4 B6 B7 B8 B9B2B1

�B3-B9 are read

�B6 is unmapped from the process (but remains in the VM Page cache)

�If a fault is taken on B6, an asynchronous read is issued for B10-B17, B13 is unmapped

�If a fault is taken on B6, the VM fault handler is able to return immediately

�Greatly improved performance, processing overhead of program overlaps I/O

�Intentional faults (e.g. B6) are used to detect direction

B2B1 B3 B5B4 B6

FAULT

B7 B8 B9

B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17

(NEXT FAULT HERE)FAULT

B10

B18

Running Write I/O Limit
W

W

W

W

W

W

vfs.lorunningspace=524288
vfs.hirunningspace=1048576

DISK

R

R

R

R

�Writes are almost always asynchronous (pageout, update)

�Reads are typically synchronous or semi-synchronous

�Tags create an issue with traditional I/O queueing and sorting

�IDE W/write-caching turned on has a similar problem

�Pace disk writes to reduce read latency

�Reserve most tags for read operations (not yet in FreeBSD)

�Priority Scheduler for I/O (not yet in FreeBSD)

Optimizing Zero-Fill Faults

�Uses idle CPU cycles and hysteresis to pre-zero free pages

�Uses Most-Recently-Used ordering for VM page free queue

�Pulls pages off the head or tail based on need for a cleared page

�Zeros the page manually if no cleared pages available

�Some kernel facilities are able to return cleared pages to the free list

FREE

FREE PAGE LIST (SIMPLIFIED)

�Actually multiple lists, indexed by cache color (next slide)

Cache Color

PHYSICAL
MEMORY

SET1

SET2

SET3

SET4

SET1

SET2

SET3

SET4

SET1

SET2

SET3

SET4

VIRTUAL
MEMORY

SET1

SET2

SET3

SET4

SET1

SET2

SET3

SET4

SET1

SET2

SET3

SET4

SET1

SET2

SET3

SET4

L1 CACHE

MAINTAIN COLOR WHEN POSSIBLE

�Make Linear addresses of VM have the same cache behavior as
 linear addresses of physical memory.

Prefaulting Pages to Improve Performance

COW

COW

COW

ZFOD

ZFOD

ZFOD

TEXT

DATA

BSS

COW

RO

RO

RO

MMAP
...

=Found in VM Page Cache

�Prefault on any cacheable VM Object (program, mmap, library)

�Only pre-map pages found in the VM Page queues, no I/O

�We currently do not pre-COW pages (no history is kept)

�We currently do not pre-ZFOD pages (no history is kept) RO

Program Startup

PROCESS MMU

MAPPED

MAPPED

MAPPED

MAPPED

MAPPED

FAULT

FAULT

FAULT

...

Interleaved SWAP

SWAP
DISK2

LOGICAL SWAP

SWAP
DISK1

LOGICAL SWAP

SWAP DISK 1

SWAP DISK 2

Non-Interleaved SWAP

Interleaved SWAP

16-page chunks

Scaling to the VM Load

ACTIVE

INACTIVE

CACHE

FREE
ALLOCATE

FREE (CACHABLE)

�Free memory is effectively CACHE+FREE

�Scan INACTIVE queue first, INACTIVE->CACHE

�Limit the number of dirty pages Laundered

�Cluster writes when possible

�Scan ACTIVE queue next, deactivating pages, ACTIVE->INACTIVE

�Refuse to deactivate pages with a non-zero active count
 (ignore active count if object not referenced, revert to LRU)

�'Swap out' idle processes only by depressing their paging priority
 (they are not actually swapped out synchronously)

�Deal with out-of-swap situations. Out-of-swap situations are
 UNRELATED to VM load.

�Detecting a heavy VM load: check CACHE+FREE at end of pass

�Under heavy VM loads enforce 'memoryuse' resource limit

�Under extreme VM loads, force runnable processes to go idle
 (extra boost by being able to free pagetable pages)

�Allocation rate includes pageins, but not a good indicator of load

�Undriven free rate typically due to program exits

Where Caching Algorithms Break Down

ACTIVE

INACTIVE

CACHE

FREE
ALLOCATE

FREE (CACHABLE)
PHYSICAL MEMORY (256M)

HUGE FILE (512M)

�READING OR WRITING A HUGE FILE (> PHYSICAL MEMORY)

�READING DATA THAT WILL NOT BE READ AGAIN SOON

�WRITING DATA THAT WILL NOT BE READ AGAIN SOON

2000 PROCESSES (OOPS!)

�FREE TO ALTERNATIVE LOCATION IN VM PAGE QUEUES
 (madvise()/MADV_DONTNEED)

�DEPRESS PRIORITY IN ACTIVE QUEUE (DEPRESS-BEHIND)

�FORCE SOME PROCESSES TO GO IDLE FOR A PERIOD OF TIME

�RECORD ACCESS HISTORY OF OBJECT

Where Caching Algorithms Break Down

DATA DATA DATA DATA DATA

�Small-block file rewrite case (mismatched filesystem block size)

�Sequential Heuristic can help

FILE

REWRITE EOF

HOLE DATAHOLE HOLE HOLE

EOFWRITE

�Filesystem fragmentation messes up read and write clustering

�Always write out the 'file' representing a new virtual disk

FILE

